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Based on the cluster width of probability density functions, the algo-
rithms have been established for fuzzy cluster analysis and for deter-
mining the suitable number of cluster. In addition, determining the 
width of cluster for two and more than two probability density functions 
has been also considered by Matlab produces. The numerical examples 
in both synthetic and real data are given not only to illustrate the rea-
sonable of proposed algorithms and programs but also to show their 
advantages in comparing with existing ones. 
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1 INTRODUCTION 

Clustering can arrange unknown large data into 
smaller groups so that elements in each group hav-
ing some similar properties. This is an initial sort-
ing step to get basic information from the data be-
fore implementing deeper analysis. In global trend, 
storing, extracting and analyzing data play an im-
portant role and have an influence on the develop-
ment of theories and application of different sci-
ence subjects. For this reason, cluster analysis 
problem has been interested by many statisticians 
so far. Cluster analysis can be applied for identify-
ing images of satellite and medicine in discovering 
computer virus and in many internet problems, etc.  
It is possible to build clusters for discrete elements 
(CDE) (Fukunaga, 1990, Defays, 1997) and clus-
ters for probability density functions (CPD) (Tai 
and Pham-Gia, 2010). CPD has consideration to 
the distribution of data in performing, so it is ap-
preciated more advantages than CDE in many cas-
es, especially in data mining (Tai and Pham-Gia, 
2010; Chen and Hung, 2015). 

In both cases, the most important problem is to 
seek a suitable criterion for building clusters and 

evaluating their quality. For CDE, the distance is 
the main criterion to perform. There are Euclidean 
distance, Chebyshev distance, city block distance 
for two elements and min distance, max distance, 
mean distance for two groups (Web, 2003). For 
two probability density functions (pdfs), some 
types of distances have been widely used such as 
the Lp- distance, the Bhattacharya distance, the 
Divergence distance, the Helinger distance 
(Defays, 1997; Webb, 2003).  For more than two 
pdfs, some general and specific measures have 
been also introduced. They were the affinity of 
Matusita and Toussaint (Matusita, 1967; Toussaint, 
1971) and the separated measure of Glick (1973). 
However, there is no above measures used as crite-
rion in CPD. Because these measures are defined 
by integrating the weighted product of pdfs, the 
calculations in performing is complicated. In addi-
tion, the visualization of these measures is not ob-
vious. According to Pham-Gia and Turkkan 
(2006), Pham-Gia et al. (2008), Montanari and 
Calò (2013), the criterion to perform CPD has not 
been much studied yet. Based on the distance of 
two pdfs, Goh and Vidal (2008) had initial contri-
bution for CPD by a new algorithm, and then Mon-
tanari and Calò (2013) has improved this algo-
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rithm. These contributions did not have the algo-
rithm for determining the appropriate number of 
clusters.  From the concept about the separated 
measure of Glick (1973), Pham-Gia et al. (2008) 
first proposed the definition of the L1 - distance 
between more than two pdfs. From this definition, 
Tai and Pham-Gia (2010) have proposed the con-
cept the cluster width used as a criterion to build 
CPD. Hierarchical and non-hierarchical approaches 
based on this criterion have obtained the results 
that are suitable for certain problems. The algo-
rithm of Chen and Hung (2015) could determine 
the suitable number of clusters automatically. 
Many examples show that this algorithm has more 
advantages than previously proposed methods. 
However, it is only suitable in case where the over-
lapping-degree of the pdfs is not too great. Many 
applications show that the number of clusters de-
termined by this method is incorrect. Based on 
WCD, the article proposes a fuzzy cluster analysis 
of pdfs and determines the suitable number of clus-
ters in non-hierarchical approach. All computation-
al problems of proposed algorithms and expres-
sions are tested by Matlab programs. These pro-
grams offer effective support for the complicated 
calculations of the numerical examples. 

The remaining part of the paper is arranged as fol-
lows. In Section 2, the definition WCD and related 
concepts is presented.  The WCD of two and more 
than two pdfs is also determined. Section 3 propos-
es a fuzzy clustering algorithm for pdfs and an al-
gorithm to determine the suitable number of clus-
ters. Section 4 presents the numerical examples in 
both synthetic data and real data. The final section 
is destined for the conclusion of the paper.    

2 THE WIDTH CLUSTER OF 
PROBABILITY DENSITY FUNCTIONS 

2.1 Some definitions 

Let f1, f2, …, fk be pdfs on , ( 2, 1) nR k n , and let 

 1 2
, , ..., ,

k
F f f f

max
( ) max{ ( )}.f x F x We have 

the following definitions. 

Definition 1. WCD of F is defined by following 
expression:  

          
max

( ) ( ) 1. 
n

R

w F f x dx                   (1) 

 If F has only one pdf then WCD equals 1. 

Definition 2. Let
1 2 1

, , , ..., ,
k

g g g g  and 
1 2 2
, , ...,

k
f f f

 
be the pdfs. The WCD of   

1 2 1
( ), , , ...,

k
g f f f  

and     1 2 1 1 2 2, ,..., , , ,...,k kf f f g g g  are defined 

by and    1 2 1 1 2 2, ,... , ,... .k kw f f f g g g    

From (1), there are some the following results:   

i)
1 2

( , , ..., )
k

w f f f
 
is a non-decreasing function in k 

and 0 ( ) 1.  w F k  The equality on the left occurs 
when fi(x), i =1, 2, …, k is identical and on the right 
when fi(x) have disjoint supports. The smaller the 
cluster width value is, the higher similarity degree 
of the pdfs. 

ii) The relations concerning the WCD of two con-
secutive clusters that differ from only one element 
and those of two clusters and their union are ob-
tained as follows:                                 

w(f1, f2, . . . , fk+1) − w(f1, f2, . . . , fk) = 

1 11 min{ ( ), ( )} . 
n

k

R

h x f x dx               

w(f1, f2, . . . , fk) = w(f1, f2, . . . , fn) + w(fn+1, fn+2, . . . 
, fk) + 1 −B,               

where 

h1 = max{f1(x), f2(x), . . ., fk(x)}, B =

1 2min{ ( ), ( )} , ,
nR

k x k x dx n k   

k1(x) = max{f1(x), f2(x), . . ., fn(x)}, k2(x) = 
max{fn+1(x), fn+2(x), . . ., fk(x)}. 

iii) For k = 2, it is  

1 2 1 2 1 21

1 1
( , ) , | ( ) ( ) | .

2 2
  

n
R

w f f f f f x f x dx  (2) 

2.2 Determination of WCD  

According to (1), WCD is determined by finding 
the fmax(x) and integrating this function. We con-
sider them in the following two cases:  

2.2.1 For one-dimension  

In this case, the fmax(x) can be find by the following 
algorithm:      

Step 1. Solve the equations
( ) ( ) 0, 1, 2, ..., 1,   

i j
f x f x i k 1, ..., , j i k  to find 

all roots. 

Step 2. With root xlm of ( )lf x – ( ) 0,
m

f x  the value 

( )l lmf x is compared with all the values of ( )j lmf x , j

 l, m. If it exists p l, m such that 
( ) ( )p lm l lmf x f x then   xlm is deleted and xlm is kept 

for otherwise. Arrange the kept roots in order from 
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small to large, then we have a roots set

 1 2, ,..., .hB x x x  

Step 3. Give i = 1, 2, …, k; j = 1, 2, …, h, the func-
tion

max ( )f x  is determined by the following princi-

ples:  

If  
1 1 1 2 1 1 1 1 1 1

max ( ), ( ), ..., ( ) ( )       
k i

f x f x f x f x  

then max ( ) ( )if x f x  for  1,x x  . 

If  1 2 2 2 2 2
max ( ), ( ), ..., ( ) ( )       

j j k j i j
f x f x f x f x , 

j =  2, 3,…, h–1 
then

max ( ) ( )if x f x  if  1,  ii xxx . 

If  
1 3 2 3 3 3

max ( ), ( ), ..., ( ) ( )       
h h k h i h

f x f x f x f x   

then max ( ) ( )if x f x  if  ,hx x  . 

In the above algorithm, 1 2 3, ,    are the positive 

constants such that:  
1 1 2 ,x x  3 1,h hx x   2 1i ix x    and 

2 1.i ix xe ++ <  

From this algorithm, the Matlab procedure is estab-
lished to find the fmax(x). When fmax(x) is deter-
mined, the WCD is easily calculated by the formu-
la (1), as well as to classify a new element by prin-
ciple (1). 

2.2.2 For multi-dimension 

In multi-dimension cases, it should be very  
complicated to obtain closed expression for fmax(x). 
The difficulty comes from the various forms of the 
intersection space curves between the surfaces of 
pdfs. This problem has been interested by Pham-
Gia et al. (2006, 2008), Tai and Pham-Gia (2010), 
Tai (2016). Pham-Gia et al. (2016) have been  
attempted to find fmax(x) function. However, it is 
only established for some cases of bivariate normal 
distribution. Here, we do not find expression of 
fmax(x). WCD is computed by taking integration of 
fmax(x) by quasi Monte-Carlo method. An algorithm 
for doing calculations has been constructed, and  
a corresponding Matlab procedure is used in Sec-
tion 4. 

3 FUZZY CLUSTERING OF PROBABILITY 
DENSITY FUNCTIONS ON WCD CRITERION 

3.1 Some concepts 

The separation of k pdfs into c different clusters 
can be represented by the partition matrix 

,ij c k
U 


    where [0,1]ij   is considered as the 

probability when the jth element is merged into the 
ith cluster In non-fuzzy clustering, 1ij   when the 

j th element belongs to the ith cluster and 0ij   

in the opposite case.  

The representative pdf of F = {f1, f2, …, fk} is de-
fined by 

 

 
1

1

.

k m

Fj j
j

F k m

Fj
j

f

f













          (3) 

The weighted exponent m of (3) has an effect on 
the fuzzy degree of result. For      m = 1, fuzzy 
clustering becomes non-fuzzy clustering. In this 
article, m = 2 in the numerical examples and appli-
cations is chosen. 

0
F

f for all x and 1
n

F

R

f dx   is proved. There-

fore, the representative pdf of a cluster is also a 
pdf. 

3.2 The proposed fuzzy clustering algorithm  

Problem: There are k populations 
(0) (0) (0) (0)

1 2{ , ,..., }kN W W W  with the given pdfs 

1 2{ , , ..., }.kf f f  These pdfs need to partition into c 

clusters (c is given) so that the 
probability for each pdf belongs to its true cluster is 
greater than the probability that it 
belongs to others. 

Algorithm: The fuzzy clustering algorithm (FCA) 
is presented by three following steps:  

Step 1. Initialize the partition matrix U(0) randomly. 
Find the representative pdf of cluster ifv by the 

formula (3) and compute the cluster width between 
each pdf and each ifv by the formula (2). 

Step 2. Update the new partition matrix  1U by the 
following principle: 

 
(1)

2/( 1)

1

1
,

( , ) / ( , )
ij c m

i j j i
j

w fv f w fv f









if 

( , ) 0, 1, 2, ..., ,j iw f fv i c  and 

             1 0ij  for otherwise. 

Step 3. Compute the value 
        1 0 1 0

,
max .ij ij

i j
U U      

Repeat Step 2 and Step 3 n times, until the follow-
ing condition is satisfied   
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   1 .n nU U    

At the end of the algorithm, c clusters are received 
with the probabilities are presented in the final par-
tition matrix. 

In the above algorithm,  is very small number 
that is chosen arbitrarily. The smaller  is, the 
more iterations and computer’s time are taken. In 
numerical example of Section 4, we chose 

41 0 .   

In this algorithm, after an iteration, the specific 
probability for merging the fj into cluster ci is pre-
sent. When the algorithm ends, we have the final 

partition matrix [ ] ,
ij cxk

 where each element ij  is 

considered as the probability of which the jth pdf 
belongs to the ith cluster. Therefore, if 
max{ } , 1, 2,...,  

ij il
j

j c , the pdf fi will be recog-

nized to belong to lth cluster.  

3.3 Determining a suitable number of clusters  

In clustering approaches, one of the most challeng-
ing problems is how to determine the suitable 
number of cluster. In the literature, the number of 
clusters can be determined by prior knowledge 
about the data. Tai and Pham-Gia (2010) has pro-
posed the algorithm with a bound on WCD to solve 
this problem. However, many results for perform-
ing with this algorithm are not suitable. Chen and 
Hung (2015) also gave a method to identify the 
number of cluster automatically. Although this 
approach had broken through in problem to find 
the number of clusters, it still gives non-reasonable 
result when the overlap of pdfs is larges. Based on 
WCD, a new approach to determine the suitable 
number of cluster c on WCD is proposed. 

Let  
1 2
, , ...

k
F f f f be the set of k pdfs and 
        1 2

, , ...t t t t

k
Fv fv fv fv

 
be the sequences on k 

representative pdfs of clusters in the iteration t.  
The algorithm to determine the suitable number of 
cluster (SNC) is established. This algorithm con-
sists of there following steps: 

Algorithm: 

Step 1. For 0,t  initialize the sequences  

of representative pdfs of clusters 
        0 0 0 0

1 2, ,... kFv fv fv fv =  1 2, ,... kF f f f . 

Step 2. Update the sequences of representative pdfs 
of cluster by the formula:                                 

 

      

    
1 1

1

, .

,

k
t t t

i j j
t j

i k
t t

i j
j

K fv fv fv

fv
K fv fv





 







, 1, ..., ,i k   (4) 

where ,
5

sw   2

1
( , ),s i j

i jk

w w fv fv


 

exp if  ( , ) .
( , )

0 if ( , ) .

i j s

i j

i j s

w
w fv fv w

K fv fv

w fv fv w
 

       
 

   

Step 3. Repeat step 2 until 
   1max{ ( , )} , t t

i i
i

w fv fv  with 0  is a very 

small positive number. 

In the above algorithm, after an iteration has fin-
ished, each pdf in F converges to the representative 
pdf of the cluster that contains it. When the algo-
rithm stops, the sequences of c representative pdfs 
is obtained. The number of representative pdfs is 
the suitable number of clusters containing them in 
the initial iteration of FCA. As a result, the number 
of clusters and the initial clusters in the first itera-
tion of FCA can be determined. 

 The programs by Matlab software to perform FCA 
and SNC algorithms are established. These pro-
grams have applied effectively for numerical ex-
amples in Section 4. However, data usually con-
tains discrete elements in practice, so we have to 
estimate the pdfs before clustering. There are many 
methods to solve this problem in which the kernel 
function method is the most popular, for example 
Parzen (1962), Duin (1997), Scott (1992), Martinez 
and Martinez (2008), and Silverman (2010). In 
numerical examples, this method is used with the 
smoothing parameter chosen by the idea of Scott 
(1992) and the kernel function being the Gaussian.  

4 NUMERICAL EXAMPLES 

In this section, two numerical examples are present 
to show the proposed algorithms and to compare it 
with existing ones K-means (1767), Goh and Vidal 
(2008), Tai and Pham-Gia (2010), Montanaria and 
Calò (2013), Chen and Hung (2015). The first ex-
ample considers 100 uniform pdfs separated off in 
two groups with 50 pdfs in each. Example 2 ap-
plies to images recognition that can interest in 
many researches in data mining. The results reveal 
that the clustering performance of our algorithm is 
better than existing ones.  
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Example 1. In this example, the synthetic data 
studied in Goh and Vidal (2008), Montanari and 
Carlò (2013), Chen and Hung (2015) are reviewed. 
The data include two classes f1 and f2 with 100 uni-

form pdfs on the interval  0,1000  (see Figure 1). 

The pdfs of these two classes are defined as fol-
lows: 

 1, , ,i i if U a b  1, ,50i   with

  1 24 1 ,  195 5i ia i b i       , 

 2, , ,i i if U c d  1, ,50i   with 

3 4805 5 ,  1004 4i jc j d j       ,     

where  ,
i i

U a b  and  ,
i i

U c d denote the uniform 

distribution on the interval  ,i ia b  and  , ,i ic d  

respectively, and 1 4, ,   are drawn from U (0,4). 

 
                                     (a)                                                                                 (b) 

Fig. 1: (a) Graph of the two classes 1f  (left) and 2f (right) 

(b) The final states of 1f  and 2f  after five (convergence) iterations    

After five iterations, original pdfs converge to two 
representative pdfs as Figure 1b. Running FCA 
algorithm after eight (convergence) iterations, the 
matrix partition (2x100) which its some columns 
are given below: 

0.768 0.768 0.795 ... 0.156 0.166 0.176

0.232 0.219 0.205 ... 0.844 0.834 0.824

 
  
From the above matrix, we have two clusters 

 
1 2 50
, , ...,f f f and  

51 52 100
, , ...,f f f . This gives 

the same result as existing results.  

Two classes pdfs g1 and g2 ( 1 1
g f  and 

 
2 1 2

(1 ) , 0, 0.5     g f f (Figure 2a) continue to 

cluster. 

After five iterations, the original pdfs converge to 
two representative pdfs as shown in Figure 2b. 

 
 

 
 

 
 
 
 
 
 

               (a)                                                             (b) 

Fig. 2: (a) The graph of two classes 1g  (left) and 2g (right) with =0.5 

(b) The final states of 1g  (left) and 2g (left) after six (convergence) iterations 
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     FCA algorithm with 24 iterations gives us the 
partition matrix (2x100), where the probability of 
the 50 first column of the first row are larger one of 

the second row and the probability of 50 remainder 
columns are opposite. The probability assigning 
elements to two clusters are shown in Figure 3. 

  
Fig. 3: The graph shows the probabilities of pdfs belong to cluster 1 (lef) and cluster 2 (right) 

From partition matrix, there are two clusters: 

 
1 2 50
, g , ...,g g and  

51 52 100
, , ...,g g g . After 500 

trials, the error with different values of   in algo-

rithms of k-Means one, Goh and Vidal (2008), Tai 
and Pham-Gia (2010), Montanari and Calò (2013), 
and Chen and Hung (2010) are presented in  
Table 1.   

Table 1: The error (%) of algorithms 

Algorithm 0    0.1   0.2   0.3   0.4   0.5   
k-Means (1967) 49.8 59.8 71.4 78.2 80.6 86.4 
Goh and Vidal (2008) 0 0 0 0 0 5.0 
Tai and Pham-Gia (2010) 9.2 9.0 9.2 8.8 11.2 13.4 
Montanari and Calò (2013) 0 0 0 0 0 5.04 
Chen and Hung (2015) 0 0 0 0 0 0 
FCA (proposed) 0 0 0 0 0 0 

Table 1 gives the best result with Chen and Hung 
(2015) and the proposed algorithm for all cases of 
 with the error 0%. 

Example 2. This example considers the problem of 
image recognition based on its colour   27 images 
includes 2 categories with 13 images for lotuses 
and water lily and 14 images for sunflowers are 
taken. The detail images are given below:  

 
      01            02        03           04          05            06            07            08             09 

 
     10             11          12             13         14          15           16           17            18 

 
     19            20           21           22             23        24           25           26              27 

Fig. 4: Images of lotuses, water lily and sunflowers 
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Fig. 5: The estimated pdfs form images of lotuses and sunflowers 

Using G scale, the graph of pdfs for images of two 
classes are given in Figure 5. 

SNC algorithm with 6 iterations gives us 2 clusters 
and after 11 iterations of FCA algorithm, the parti-
tion matrix is obtained as follows:  

0.098 0.462 0.251 ... 0.421 0.812 0.834

0.902 0.538 0.749 ... 0.579 0.188 0.166

 
  
 

 
(a)                                                                          (b) 

Fig. 6: The graph shows the probabilities of pdfs belong to cluster lotuses (a) and cluster sunflowers (b) 

From the above matrix, the two clusters are estab-
lished. Performing 500 trials, the error of result is 
11%. Next, cluster analysis is performed for this 
data set by Chen and Hung algorithm. This algo-
rithm only gives a single cluster with all pdfs after 
6 iterations.  

ii) Using three variables (R, G, B), making the sim-
ilar as i), the SNC algorithm gives two clusters 
after 25 iterations and we obtain the following par-
tition matrix from FCA algorithm:  

0.483 0.502 0.477 ... 0.666 0.579 0.587

0.517 0.498 0.523 ... 0.334 0.421 0.413

 
 
 

 

With 500 times to perform, we have error 18.5%. 
Using original data, Chen and Hung (2015) algo-
rithm one time converges one cluster in this case. 

From the two above examples, we see that the re-
sults of Chen and Hung and the proposed algorithm 
are the best. However, at the end step, our algo-
rithm gives extra detail the probability which be-

long to each clusters of elements. We also see that 
with the example which classes are well separated 
(Example 1), the result of Chen and Hung (2015) is 
appreciable. However, in case of overlap region of 
pdfs are large, this algorithm is disadvantage. Ex-
ample 2 shows this problem and evidence ad-
vantages of the proposed algorithm.  

5 CONCLUSIONS 

The article has considered the problem to deter-
mine the WCD in application for cases of one and 
multi dimensions. Based on the WCD criterion, a 
fuzzy cluster algorithm for pdfs and determination 
of the suitable number of clusters are proposed. 
These algorithms are applied to several synthetic 
and real data by Matlab codes. These numerical 
examples prove suitably and applicability of pro-
posed algorithm. They also show that the results 
are more efficient than existing ones. In coming, 
we will apply to other practical issues, especially in 
data mining with big data. However, the conver-
gence property of proposed algorithms is not stud-
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ied in this article. Thus, our further studies will 
emphasize this problem.     
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